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Introduction.

It is possible in certain collision problems, involving 
charged particles, to make a correlation with radiation 

theory by analysing the perturbing fields of the particles 
into pure harmonic waves, and comparing the effect of 
these components with that of homogeneous radiation of 
corresponding intensity and frequency. Such a procedure 
was used by Fermi1 (1924) to calculate the ionisation of 
atoms by «-particles. More recently its application to radia­
tive collisions has been considered by Weiszäcker2 and the 
writer.3 In this paper a further general development of the 
method is made, with applications to the production of pairs 
of positive and negative electrons by high-energy photons 
and electrons, the splitting of a photon by an electric par­
ticle, radiative collisions, nuclear disintegration by electrons, 
and other problems. In some of these problems new results 
are arrived at, and in others a check obtained on previous 
results. The value of the method, however, lies perhaps 
not so much in this as in the new view-point provided by 
an analysis of the problems dealt with into two parts viz.

1 Zs. f. Phys. 29, 315, 1924.
2 Zs. f. phys. 88, 612, 1934.
8 Phys. Rev. 45, 729, 1934. In this communication to Physical Review 

a forward reference was made to the present paper, the publication ot 
which has been delayed through the inclusion of more applications than 
was then intended. A brief discussion of the method under consideration 
was also given by the writer in an earlier paper, Proc. Roy. Soc. 139, 
163, (1933).
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the representation of the perturbing field by radiation, and 
then the calculation of the effect of this radiation.

The characteristic features of quantum mechanics enter 
only into the second part, and, as a result, this kind of 
analysis makes it easier to see what is the theoretical basis 
of the final results, and therefore helps us to judge their 
validity. Interesting cases in this connection are the emission 
of radiation in collisions between a high energy electron 
and a nucleus, and the production of pairs by a high- 
energy photon in a nuclear held. In these cases we find 
that the quantum mechanics which enters into the existing 
treatments really concerns only energies of the order of me2 
however big the energy of the electron or photon.

In connecting up collision phenomena with radiative 
effects certain features of the former are readily seen to be 
due to quite familiar results in radiation theory. For in­
stance the large number of collisions, according to Bethe’s 
calculations using Born’s method, in which a fast particle 
looses energy close to the ionisation potential of the atoms 
traversed, is seen to be exactly the same effect as the well- 
known rapid increase in photoelectric absorption as an 
absorption edge is approached. As another example, the 
much greater radiation emitted by a very fast electron in 
a classical collision than in a quantum-mechanical collision, 
is found to correspond very closely to the much greater 
scattering given by the classical Thomson formula for high 
frequencies than is given by the quantum-mechanical formula 
of Klein and Nishina. Another instance, where the ordinary 
treatment gives no obvious interpretation, is the size of the 
region around the nucleus from which pairs are produced 
by high energy photons. This region extends out to a dis­
tance of the order of £ (/z/'/nc) from the nucleus, where
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tmc2 is the energy of the photon. The present treatment 
shows that this is so because out to but no further,
the field of the nucleus has Fourier components with high 
enough frequency to satisfy the threshold energy condition 
for the production of pairs.

The paper is arranged into two parts. In the first part 
the conditions of applicability of the method, and the form 
of the spectrum of the “equivalent” radiation are considered. 
The second part is devoted to applications, the following 
problems being considered:

1) Ionisation of atoms.
2) Disintegration of atomic nuclei by fast electrons.
3) Radiative collisions, low velocities, n/c«l.
4) Radiative collisions, high velocities, 1—p/c«l.
5) Production of electron-pairs by a high energy photon 

in the field of an atomic nucleus.
6) Production of electron-pairs in collisions between two 

electric particles.
7) Splitting of a photon in the field of an electric particle.
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PART 1. GENERAL
§ 1. Conditions of Applicability.

The general justification of the method under considera­
tion lies in the fact that quantum-mechanics makes no a 
priori distinction between the effect of the field of a charged 
particle and that of a radiation field. If within a certain 
region the one has the same electromagnetic description 
as the other, then they produce the same effects within 
that region, provided reaction is small. The conditions of 
applicability of the method are then :

(I) the condition for reproducing the field of the perturbing 
particle over the region occupied by the perturbed 
system, during the collision, by a radiation field.

(II) the conditions for considering as independent the effects 
of the different Fourier frequencies in this field.

As regards the second condition, it follows from the 
linearity of the equations of motion that the effect of a 
given ‘frequency’ in the Fourier spectrum of the perturbing 
field depends on the other frequencies only if the latter are 
sufficiently intense that they produce, in a given collision, 
an appreciable change in the perturbed system. The condi­
tion is therefore satisfied if the field of the perturbing par­
ticle is sufficiently weak that in a given collision there is 
only a small probability that the perturbed system makes
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a transition from its initial state? If this probability (tt) 
is not small then the change produced in the system by 
a given frequency, r, may depend to an appreciable extent 
on the change which is being produced in the system by 
the other frequencies. The phase-relationship of the differ­
ent frequencies — which makes them build up into a 
pulse — is then of primary importance. It should be em­
phasised, in passing, that if under certain conditions the 
linearity of the equations of motion required by quantum­
mechanics breaks down the separate harmonic components 
of the perturbing field may not be independent even though 
tt«1. The observed failure of the quantum-mechanical 
radiative formula for very high energy electrons seems to 
indicate that such conditions do exist if the perturbing field 
acting on an initially stationary electron is so contracted 
by the Lorentz-Fitzgerald effect that its ‘thickness’ is less 
than the classical electron radius, e2/inc2. This has been 
discussed elsewhere by the writer2, and also by Oppen­
heimer3, and will not be entered into further in this paper.

It is important to note that if we are not concerned 
with the final state of the perturbed system, the condition 
tt«1 need not necessarily be satisfied. This is so for a 
radiative collision, where we are interested in the radiation 
emitted by an electron rather than in its final motion after 
the collision. In this case it is only necessary that the prob­
ability be small that in a given collision the perturbed 
electron, if initially at rest, does not acquire a velocity

1 This condition (n « 1) is essentially equivalent to the condition 
of applicability of the first approximation in Born’s method of treating 
collisions. In both cases the probability that the perturbed system is left 
in its initial state, in a given collision, must be large.

2 E. J. Williams, Phys. Rev. 45, 729, (1934).
3 J. R. Oppenheimer, Phys. Rev. 45, 903 (1934).



8 Nr. 4. E. J. Williams:
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and perpen-
(O and E2(f) are given by

It will be noticed that the interval of time, T, for which 
the forces are appreciable is of the order of p/£v, and that 
during this time |P2| — l-Ej ttf/p » lEj (1—p2/c2)1/2.

Let us now imagine a plane radiation pulse travelling 
parallel to v, with an electric force equal to L\(7) at P; 
and another pulse IE travelling perpendicular to v and PL, 
with an electric force equal to E.2(t). These radiation pulses 
accurately reproduce the electric field of A at P, but not 
its magnetic field. The magnetic field of the pulses exceeds

A
V

comparable with that of light, in order that its scattering 
power may remain unaffected.

As regards the reproduction of the field of the perturbing 
particle by radiation — condition (I) — let us first consider 
the field at a point P due to a particle A, of charge E, 
moving with uniform velocity v along aa . The field at P 
may be resolved into two components of electric force, 
E^l) and E2(t), perpendicular and parallel to v respectively ; 
and a magnetic force H(f) equal to (p/tOlEj, 
dicular to v and E1.
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that of A by a component equal to |£\|(1 — z?/c) parallel 
to H, and a component equal to | 1, « | | (1—z?2/c2)1/2,
parallel to Et. Since the relative importance of the magnetic 
and electric forces in a perturbing electromagnetic field is 
of the order of tr'/c2, where u is the velocity of the per­
turbed particle, it follows that the errors arising from the 
misrepresentation of the magnetic field of A by the pulses 
7?r and is of the order of (1—z?2/c2) zz2/c2. They may 
therefore be neglected provided

(1—z?2/c2) zz2/c2 << 1. (2)

This condition is satisfied in most collision problems be­
cause velocities zz comparable with c do not usually occur 
in the perturbed system except when the velocity u of the 
perturbing particle, A, is close to c.

We have chosen the pulses and 7?2 lo represent the 
field of the particle A only at one point P, and for only 
one velocity of the observer, viz., zero velocity in the system 
in which A moves with velocity zz. In order that they may 
have the same effect as A in actual collisions, they must 
reproduce the field of A for an observer situated at any of 
the points where the perturbed particle may be during the 
collision, and travelling with any of the velocities which 
it may have. It may be shown that these conditions are 
satisfied provided

(a) L « p, where L represents the dimensions of the 
perturbed system at the beginning of a collision, p the im­
pact parameter.

(b) zz (1 —zz2/c2)-12 « z?(l — z?2/c2)-1/2. zz denotes the range 
of velocities of the perturbed particle, including velocities 
acquired during the collision under consideration, v denotes 
the velocity of the perturbing particle. Both zz and v are
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measured in a system in. which the perturbed particle is 
initially at rest (or more precisely in which its average 
initial velocity is zero).1

Finally we must consider the conditions for regarding 
the perturbing particle, A, as a centre of force moving with 
uniform velocity. Deviations from this will occour for two 
reasons, viz. the reaction of the perturbed system on A, and 
secondly the natural uncertainty in its position and velocity. 
In nearly all problems to be considered here the perturbed 
particle is an electron, so that the mass, m, of the perturbed 
particle is never greater than the mass, M, of the perturbing 
particle, A. It follows that in a collision which satisfies the 
above condition (b) the transfer of momentum during the 
collision is small compared with the momentum of A. The 
effect of reaction can therefore be neglected if (b) is satisfied. 
The effect of the natural uncertainty in the velocity and 
position of A on the definition of its path is small pro­
vided its de Broglie wavelength, h/Mv, is much less than 
the impact parameter p. This is also satisfied if lhe condi­
tions (a) and (b), given above, are fulfilled, because if 
L«p and zz « p then we must have h/nii> « p, and there­
fore h/Mv « p, since M»m. (a) and (b), and the condition 
for the independence of lhe Fourier components of the 
perturbing field of A, thus represent the complete conditions 
for the applicability of the method.

§ 2. Spectrum of Equivalent Radiation.

The spectral distribution in the pulses 7?r and Z?2, which 
represent the field of the perturbing particle in a collision 
with an impact parameter, p, is given in terms of the ex-

1 This condition ensures that the condition (2), regarding the re­
presentation of the magnetic field, is also satisfied.
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pressions (1) for the component forces, E{(t), and E2(t), 
by the formula

WO = (C/2Jr)|$£1,2(0e2’li’’‘dz|2 (3)

7(r) is in ergs, per unit frequency range, per unit area 
of the plane of the pulse. For low frequencies such that 
v«v^/p, the exponential in (3) varies very little during

Fig. 2.

the time, T, for which and E2 (given by (1)) are appre­
ciable. For such frequencies, 7(r) is therefore independent 
of v, and is given by

WO = 4 - (c/27i) ( \ Ei,2d<}2. 0)

Using the expressions (1) this gives Io — (2c/jt) Ez/p2 ir for 
RL, and zero for R.2 (E2 being an odd function of the time).

For high frequencies such that 2rrv » v£lp, Er and E2 
vary very little during one period of the exponential in (2), 
so that /(r) is negligible for both Rv and R2. Thus for Rlt 
I(y) is constant for 2/rr « v£/p, falls off rapidly in the region 
2nv~v£/p, and is negligible for 2jrv»v'$lp. R2 is appre­
ciable only for 2n:v ~ u'i/p, and in this region its intensity 
relative to that of R{ is of the order of (1 —p2/c2). These 
main features are represented schematically in Fig. 2.

In actual applications of the method it is convenient 
to have an expression for the spectrum of the resultant 
radiation which represents the effect of the perturbing par- 
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ticle in all collisions with impact parameter greater than 
some quantity p . This is given in terms of the intensity 
I(v,p) of the pulses I\ and R2, for a given value of the 
impact parameter, p, by the integral

»0C
I(v>Pin) = 1 I(v,p)2npdp

rm

Using (1) for Et(t) and E2(0, and (2) for I(v,p) this gives1

= (4E2c/p2)log (1 • 12p£/2^rpm j/e )

/2(r,pm) = (2E2c«(l-« (6)

I(v>Pin) = A+ 4 = (4E2c/zr)log(/b$/27rcpm), 
/•= l-12f-ü2/2c2«l.

The expression for the resultant intensity falls off logarith­
mically with the frequency r, and (v%lpm) is an effective 
upper limit to the spectrum. The formula is not accurate 
near the upper limit, but in most of the present applications 
such frequencies are not involved.

The units in term of which (6) is expressed are such 
that I(v,pin)dv is the energy of the equivalent radiation of 
frequency between v and r + dr per particle. It corresponds 
to a number of photons in the interval dv equal to

N(v,pm) dv = (4 E2c/v2 liv)\og(fv^/27rvp]n) dv

= (2/tt) az2 (vic)-2 log (fv'SlZnvPm) dvjv 
where

« = e2/hc,( = 1/1 37), ce = E. (7)

This formula represents the effect of the field of the 
moving particle at distances from its path greater than p . 
The suitability of the method in any given problem depends

Cf. N. Bohr, Phil. mag. 25, 10, 1913; 30, 531, (1915).
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on whether or not a value of p can be chosen so that 
the effect of the field of the particle inside p is of little 
importance, while at the same time its field outside p can 
be represented by radiation, in accordance with the condi­
tions (a) and (b) of § 2. This is approximately so in the 
problems considered in this paper. We shall here consider in 
particular the case of those problems, such as the radiative 
effect and “pair-production”, in which the perturbed particle 
is an electron and the perturbing particle, an atomic nucleus, 
whose charge ze, we shall assume to satisfy ze2/hu«l. 
In such problems the nuclear field inside a sphere around 
the nucleus of radius less than rQ~filnw makes no signi­
ficant addition to the resultant effect. As v approaches c 
the radius r0 of this sphere, inside which the field is of 
little importance, approaches filme, and not the de Broglie 
wavelength (/i/mc)(l—vt/cF)112, though it is the latter which 
defines the ineffective region for scattering. The reason 
for this will not be entered into here as it is considered 
in a later paper, on some general collision problems, by 
Professor Bohr and the writer. Here we need only consider 
to what extent the nuclear field outside fi/rnv can be re­
presented by radiation.

For the representation of the field at a given distance 
p from the nucleus, by radiation, conditions (a) and (b) 
require the perturbed electron in a collision with impact 
parameter p to be, during the collision, within a volume 
of dimensions L«p, and not to have momentum ap­
proaching nw(l— d2/c2)-12 — both L and the momentum 
being measured in a system in which the average initial 
velocity of the electron is zero1. Now if we represent the

1 These conditions are of course also conditions for the use of the 
idea of impact parameter.
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electron at the beginning of such a collision by a wave­
packet of dimensions, L, ~ (fi/mu-pY 2 then the ranges of 
position and velocity during the collision, due to the natural 
uncertainty associated with this finite wave-packet, are of 
the order of (Tz/nw-p)1/2 and (filmu/p)112 v respectively. There­
fore, apart from velocities acquired during the collision, 
the conditions (a) and (b) are sensibly satisfied provided 
p>h/nw. As regards the velocities acquired during the 
collision these may be due to the ordinary process of mo­
mentum transfer, or to the special phenomenon under 
consideration. In the radiative effect for example, the electron 
acquires recoil momentum through the emission of radiation. 
This second kind of momentum transfer will be considered 
in the actual applications. The first kind of momentum 
transfer effectively takes place in every collision and its 
average value is equal to the ordinary classical momentum 
transfer. The latter corresponds to a change of velocity of 
the order of ze2/pum. For p ~ h/nw this is equal to (ze2/7zz?) • v, 
which is small compared with u under the condition 
ze2/hu«l. Provided therefore that (re2//m)«l, the field 
of the nucleus outside fi/nw can, to a first approximation, 
be represented by radiation. The spectral distribution of 
energy in the equivalent radiation is then given by (7) with 
pm = hfnw. With this value of pm (7) becomes

N(y)dv = (2/h) az2 (c/v)2\og(gnw2'g/hv) dv/v. (8)

This formula will be used in many of the subsequent ap­
plications. We cannot give a definite value to the nume­
rical coefficient g inside the logarithmic term. We only 
know that it is of the order of unity. The reason for this 
is that the lower limit to the effective region of the nuclear 
field in the problems concerned can only be said to be
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of the order of hl mu, and also the fulfilment of the con­
ditions (a) and (b) is critical in the limit p~hjnw. This 
uncertainty regarding the value of g represents the degree 
of approximation attained by the method in these problems. 
When the order of magnitude of the argument of the loga­
rithmic term is large, as is the case in many of the pro­
blems considered, the approximation is good.

It might be mentioned here that the fine-structure con­
stant, a, which enters into the equations (7) and (8), and 
the logarithmic term, are the principal factors in the relation 
of the effects of an electric particle to those of radiation. 
The logarithmic term depends essentially on the Coulomb 
law of force. in the argument of this term in (7),
represents the greatest distance from the path of a particle 
moving with velocity v at which frequencies v are found 
in the spectrum of its field (see fig. 2). If the perturbing 
field is not a Coulomb field then the logarithmic term 
must be modified. A case of practical interest, and where 
a modification can readily be made, is when the perturbing 
particle is an atomic nucleus, shielded by the atomic elec­
trons. In that case, if the quantity (^p/2nr) inside the 
logarithmic term is greater than atomic dimensions, it must 
be replaced by a “shielding” radius. For atomic number 
Z the effective shielding radius is of the order of Z~1/3a = 
= Z~1/3 (7z/mca), a being the hydrogen radius. Making the 
modification in the case of formula (8) we have

N(y) (Z r = (2/tt) az2 (c/v)2 log (pl a cz1^). (9)

As regards the polarisation of the “equivalent” radiation 
represented by the above equations the photons contributed 
by the pulse RL, corresponding to the component of electric 
force in the field of the particle perpendicular to its path, 
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are effectively unpolarised and travel in the same direction 
as the electric particle. They are unpolarised because the 
resultant photon distribution involves an integration round 
the path of the moving particle as axis. When (1 — v2lc2) « 1 
the pulse /?2 ‘s negligible intensity, so that under such 
conditions the whole of the equivalent radiation is repre­
sented by J?t, and is therefore unpolarised and travels with 
the particle. jR2, though always small, is not negligible, 
if (1 —p/c)~l. Under such conditions the resultant equi­
valent radiation is partially polarised because the electric 
force in J?2 is always parallel to the path of the particle. 
This must be remembered if a polarisation is of importance.
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PART 2. APPLICATIONS
§3. General relations.

We shall here consider the general relations between 
various collision phenomena and radiation effects. These 
relations form the basis of the more detailed calculations 
given in the sections to follow. The simplest example is 
the ionisation (or excitation) of an atom by a moving par­
ticle. This effect is related to the photoelectric action of 
radiation, and may be calculated by considering the photo­
electric absorption of the “equivalent” radiation discussed 
above. The process may be represented as follows:

Socc + S'emp + hVp-^ Sgmp + S'^. (10)

Socc denotes an occupied state in the atom, an empty 
state of higher energy. hv denotes a photon which we 
associate with a frequency v in the Fourier spectrum of 
the field of the moving particle, — we can call it a virtual 
photon.

The reverse of an ionising collision is a collision of the 
second kind, in which the atom is initially in an excited 
state, and drops to a state of lower energy during the colli­
sion — the colliding particle experiencing a gain of energy. 
In terms of radiation effects this process is one of induced 
emission, and may be represented by

Vid. Selsk. Math.-fys. Medd. XIII, 4. 2
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s;» + Se„.„ + ™ s;,„p + S„ + (N + 1 ) h V (11)

iV is a measure of the number of virtual photons, per unit 
frequency range in the field of the perturbing particle, whose 
frequencies correspond to the energy difference e between 
the states S and S'. Owing to the induced nature of the 
phenomenon the quantum of energy given out by the atom 
is taken up by the moving particle, and does not appear 
as a free radiation photon. This is indicated in (10) by 
(N+ l)hrp on the R. H. S.1

The relations between other collision phenomena and 
radiation effects are given in the following table. In all the 
cases the perturbing particle is an atomic nucleus, and 
the perturbed particle an electron. The notation used in 
the third column is analogous to that used in (10) and 

(11). S denotes a Dirac negative energy state, S an ordinary 
state of positive energy. Semp accordingly means a positive 

electron, and, S a negative electron. A photon of fre­
quency vn in the virtual radiation field of the nucleus is 
denoted by hv , an ordinary (or external) photon by hve.

It might be mentioned that though many of the effects 
given in the above table concern interaction with electrons 
in negative energy states it does not seem possible to in­
clude with them the coherent scattering of radiation in the

1 It is of course not meant that the new spectrum of the particle 
corresponds to such a change in the intensity of a given frequency. Ac­
tually the acquisition of energy by the moving particle affects the whole 
of its Fourier spectrum. This difference between the field of a moving 
particle and a true radiation field is one of reaction, and is of no con­
sequence provided the energy exchange is small compared with the kinetic 
energy of the particle (cf. § 1). If the effect of radiation essentially de­
pended upon its quantisation, this would not necessarily be true. That 
is, however, not the case, the effect of radiation being calculable quantum- 
mechanically from its electro-magnetic description alone, without explicit 
reference to photons.
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Relations between collision phenomena and 
radiation effects.

2

Collision Phenomenon Corresponding Radia­
tion Effect

Equation for Process

1) Radiative Collision. Scattering.

+ +
Socc + S'emp + hvn~*

+ +
Semp + Socc +hre

2) Reverse of Radiative 
Collision. Induced Scattering.

Socc + Semp + hVe+ Nh

S’cmp + Socc + (N + 1) A Vn

3) Pair-Production by 
photon, hve, in nuc­
lear field. Pair-production in 

free space by 2 
photons.

— +
Socc + Semp + Zl *4 + 11 Vn

\mp 1 *^occ

4) Pair-Production by 
two particles.

•S S H- 7i v H- h r —>occ 1 emp 1 n 1 n

— +
$emp *^occ

5) Annihilation of pairs 
in nuclear field giving 
one photon.

Induced annihila­
tion of a pair by 
radiation, giving 
two photons (one of 
these being ident­
ical with the induc­
ing radiation).

5enip + Soee + Nhrn~>

— +
S +5 + (AH-l)hr +/IP

occ 1 emp 1 v 7 n ‘ e

6) Splitting of photon 
(hve) into two photons 
(7rC and hv'^) in nuc­
lear field. Simultaneous scatte­

ring of 2 photons by 
electrons in nega­
tive energy states.

h ve + hrn-> 

hv'.+ hv"

7) Radiative collision 
due to simultaneous 
action of 2 particles 
on electrons in nega­
tive energy state.

hvnl+hvn^
hv’e+hv"e
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field of a nucleus. The essential feature of such scattering 
is that we have one photon before the interaction, and 
afterwards one photon travelling in a different direction. 
The change in direction means a momentum transfer, and 
if the nuclear held was equivalent to radiation, this could 
not take place without one of the photons in the “nuclear” 
radiation being deflected. This would result in 2 photons after 
the encounter, and would therefore not represent coherent 
scattering. It therefore appears that coherent scattering es­
sentially depends on the difference between the nuclear 
field and a radiation field. This difference vanishes as the 
energy of motion of the perturbed particle relative to the 
nucleus becomes large compared with me2. This would 
indicate that there is only a small contribution to coherent 
scattering from the production of virtual pairs of positive 
and negative electrons with energies large compared with 
me .

§4. Excitation and Ionisation of Atoms.

The ionisation and excitation of atoms by electric par­
ticles has been considered extensively by various workers 
on the basis of Born’s theory of collisions. The case of 
particles whose velocity is large compared with the orbital 
velocity of the electrons in the atoms traversed has, in 
particular, been accurately worked out by Bethe1. The 
problem is considered here only as an example of the use 
of the method described in the first part of this paper, and 
to show how some of the main features of the problem 
considered by Bethe readily follow from certain well-known 
properties of the absorption of radiation. The consideration 
of this problem also makes clearer the treatment of the 
analogous problem of the disintegration and excitation of 

1 H. Bethe, Ann. Physik, 5, 325, (1930).



Correlation of Certain Collision Problems with Radiation Theory. 21 

atomic nuclei by electrons, which is considered in the next 
section.

A complete treatment of the ionisation and excitation pro­
duced by an electric particle by the method of replacing 
its field with radiation is not possible, because the con­
ditions set out in § 1 are not satisfied in close collisions 
in which the particle passes through the atom (impact 
parameter, p < atomic dimensions, d). The method can be 
applied only to more distant collisions in which the path 
of the particle lies outside the atom (p>d). We shall see, 
however, that the frequency of excitation and of ionisation 
is mainly due to these collisions. The close collisions are of a 
different type and are responsible only for a comparatively 
small number of large energy transfers to the atomic electron.

We shall consider, for definiteness, the ionisation, by 
electrons, of hydrogen-like atoms in the ground state 
(nuclear charge ze), and assume that the velocity u of the 
incident electron is large compared with the orbital velocity, 
u, of the atomic electron, i. e. ze2}h v « 1.

The intensity of the virtual radiation which represents 
the field of an electron in collisions with impact parameter 
greater than atomic dimensions, d, is given by (7) § 1, if 
we substitute d for pm in that equation. As pm occurs in­
side the logarithmic term in (7) an exact definition of d is 
not important, and for hydrogen atoms we can take it equal 
to the diameter of the hydrogen BoHR-orbit, i. e. (//2/2m,/)12, 
J being the ionisation potential. Making this substitution 
for p in (7) we have, for the distribution of photons in 
the corresponding radiation,

N(v)dv = tf-1« (c2/p2) log (^mp2 J/Q2 (1 — v2/c2)i2) dv/v (12) 

g = 0-56-1.
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The ionisation produced by the electron is now obtained 
by considering the photoelectric absorption of the virtual 
radiation represented by (12), and the excitation may be 
obtained by considering the line-absorption.1 Actually the 
probability <I>{ (Q) dQ of ionisation, in which the energy 
transfer lies between Q and Q + dQ is the product of (12), 
with v — Qjh, and the atomic absorption coefficient, /z, of 
the matter traversed for radiation of frequency v = Q/h. Thus

®i(Q)rfO = A7(()M)d(Q/h)VA(()/h). (13)

The theoretical value of /z has been accuralety evaluated 
for hydrogen atoms. The exact formula is, however, rather 
complicated and to see more readily the form of <P1(Q) we 
shall here use the following approximate expression for g 
viz.,

/z (r) = 0.77 tt (e2//nc) (J/7t)1,8y-2,8. (14)

Since Jct~ Z~ this corresponds very nearly to the well-known 
“Z4Z3" law of photoelectric absorption. Substituting in (13) 
we obtain

®i(Q) dQ = 0.77 (2 ?r e4/nw2 J2) (J/Q)3-8 
log Qgmir.JJQ'1 (1 — zi2/c2)) dQ.

To obtain the total effect of the moving electron we 
must add to (15) the effect of close collisions in which 
the electron passes through the atom (p<d). These colli­
sions can be very simply treated, being practically equivalent 
to collisions between two free electrons in which their dis­
tance of approach is of the order of d and less. The effect 
of such collisions between two free electrons can be readily

1 There will also be some ionisation and excitation due to the Compton 
and Raman scattering of the virtual radiation, but this is quantitatively 
unimportant. Such scattering represents a type of radiative collision, and 
is considered separately in § 6.



Correlation of Certain Collision Problems with Radiation Theory. 23

shown to be represented by the Rutherford scattering 
law provided we leave out the scattering through angles 
corresponding to momentum transfers of the order of or 
less than hid. This means that the close collisions, with
p> d, give rise to energy losses, Q, ranging from the maximum
energy loss of i mir down to 
about Q~J, and distributed 
according to the law for colli­
sions with free electrons, viz.,

<D2 (Q) dQ — (2 tie41mir) |
(l + 4J/3Q)dQ/Q2. J(16)1

For Q~J the formula is of 
course correct only in order 
of magnitude. However, in 
this region of Q, we tind that

(Q) is small compared with 
(Dl (Q). This brings us to the 
result that practically all the 
excitation, and most of the 
ionising collisions with energy 
losses of the order of J, are 
due to the photoelectric effect 
represented by equation (15).

The distributions (DL (Q)

log (a/J)
Fig- 3.

and (Q) are represented in fig. 3 for electrons of energy
|/rø2 = 2,500.7.

The ordinates represent (D ((j) 4- (2 7t e*Inur JQ), and the 
abscissae log (QIJ), so that the area under the curves is 
proportional to the number of collisions. The sum ot (Dr (Q)

1 The second factor in brackets represents the effect of the motion 
of the atomic electrons.
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and CD.2 (Q), agrees satisfactorily with the distribution due 
to all collisions as calculated by Bethe using Born’s theory. 
It will be noticed that while both (Dt (Q) and (Q) in~ 
crease markedly with decreasing Q, the very rapid rise in 
the resultant curve close to J is mainly due to the variation 
of (Q). We thus see that the large concentration of 
energy losses close to the ionisation potential which is re­
quired by Bethe’s calculations is due to the photoelectric 
action of the field of the particle in distant collisions. The 
derivation of (15) shows that this concentration is mainly 
the result of the well-known rapid increase in photoelectric 
absorption as an absorption edge is approached. It is, how­
ever, also partly due to the fact that the density of virtual 
photons corresponding to the field of the particle varies 
as r—1.

It may be of interest to mention that according to recent 
calculations by Wheeler1 and others, the photoelectric 
absorption does not fall off as rapidly with increasing fre­
quency for helium as for hydrogen. The energy losses 
suffered by a fast particle in helium are therefore not so 
concentrated near the ionisation potential as in the case of 
hydrogen. These characteristics of helium somewhat reduce 
its stopping power, and an outstanding discrepancy of about 
10 °/o between the observed stopping-power of helium and 
the value calculated assuming hydrogen-like wave-functions2 
may be accounted for in this way.

The division of the inelastic collisions of an electron 
with an atom, into the two classes represented by (D1 (Q) 
and (I).2 (Q), is of course not perfectly sharp, the two kinds 
of collisions actually merging into each other. There is,

1 J. A. Wheeler, Phys. Rev. 43, 258 (1933).
2 See e. g. Proc. Roy. Soc. 135, 108 (1932).
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however, in general a fairly clear distinction between them, 
and for a given energy loss this distinction is well exemp­
lified by the momentum relations obeyed. The photoelectric 
collisions represented by (Q) are essentially 3-body colli­
sions involving the nucleus. By comparison with the photo­
electric effect of ordinary radiation, (in which the momen­
tum of the photoelectron is mainly balanced by a “recoil” 
of the nucleus) we would expect the deflection of the electron 
in these collisions to be much less than if it were reacted 
upon by the full momentum of the ejected electron. On

Fig- 4.

the other hand in the two-body collisions, represented by 
(D., (Q), the ionising electron takes the full reaction. These 
features are clearly present in the results obtained by Bethe1 
using the general method of Born. For we find from Bethe’s 
calculations that the angular distribution of electrons which 
have sullered a given energy loss, Q, has two peaks, whose 
relative sizes are approximately in the ratio of (Q) to 
<P2(Q)2. The Peak at large angles corresponds to <D2(Q), and 
its maximum obeys the relation betveen deflection and energy 
loss for two-body collisions. The other peak, whose magni­
tude is represented by (D1 (Q), is in the region of much

1 H. Bethe, Ann. Physik, 5, 325, (1930).
2 The existence of these two peaks has not been previously considered. 

It seems to be assumed in previous discussions that the peak at large angles 
falls uniformly with decreasing angle and that there is no second maximum 
at small angles.
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smaller angles. Fig. 4a represents the distribution, according 
to Bethe’s calculations, for Q = 5J, and %nw2 = 2,500J. 
4b represents the case of Q = 10 J. The much smaller rela­
tive size of the peak at small angles for (D = 10 J corres­
ponds to the much more rapid decrease of (Zq (Q) with Q 
than of CD., (Q) with ().

2. (17)

The angular distribution of the ejected atomic elec­
trons in the photoelectric collisions represented by equation 
(15) is of particular interest in connection with the one­
sidedness of the field acting on the atoms in these collisions. 
In a distant collision (impact parameter p > atomic dimen­
sions) the component, Er, of the electric force acting on 
the atom normal to the path of the electron, is directed 
away from the path throughout the collision, tig. 1. The 
electric force in any individual Fourier component in the 
Fourier representation of is, however, quite symmetrical 
as regards the normal to the path of the electron. The 
“photoelectrons” produced by the action of any one such 
component are therefore also symmetrically distributed, being 
directed towards the path of the electron as much as away 
from it. In analysing the force, Elt into Fourier components, 
and assuming these to act independently, it would therefore 
appear that an essential feature of the perturbation is lost. 
This is, however, not the case, and the symmetrical distri­
bution of the photoelectrons is quite in accordance with 
the results obtained if no resolution into Fourier compo­
nents is made. For if a uniform electric force Er acts for a 
certain time on an atom in a fixed direction x, the pro­
bability of the excitation of any given state (r) is pro­
portional to
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(rf) represents the state of the atomic electron at time t, 
and depends on the perturbing fore (f). If, however, the 
perturbation is small we can take ifj(r,f) as constant, and 
equal to the ^-function representing the undisturbed atom. 
In that case the force Er (f) occurs only in one place in 
(17), and since this is a square term its value is unaltered 
if we change the sign of E1 (/). This means that the excited 
states, which may of course be states in the continuous 
spectrum and therefore representing photoelectrons, are 
symmetrica] with respect to the positive and negative direc­
tions of the electric fore E1, though Et may be directed along 
only one of these directions throughout the perturbation.

The above result assumes that the perturbation is suffi­
ciently small that the atom may be taken to be in its initial 
state throughout the collision. This is, however, also the 
condition for considering the Fourier components inde­
pendently (§1). The condition is satisfied if Qcl « e, where 
Qcl represents the classical energy acquired by a free elec­
tron in the same held, and e represents the energy difference 
between the initial state of the atom and the next excited 
state. It is interesting that for a free electron e is infinite­
simal, so that the condition is never satisfied. For a free 
electron the energy transfer is effectively due to the action 
of an infinite number of components of zero frequency. 
The phase relations between these components makes them 
build up to a one-sided pulse, and the velocity acquired 
by the electron has the same one-sidedness as in the classical 
theory — in accordance with Ehren fest’s theorem.

It might be pointed out that for a bound electron tra­
versed by a one-sided pulse, there is, classically, as well as 
on the quantum theory, no indication of the one-sidedness 
of the the pulse in the resultant motion of the electron 
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after the collision. This is so because the motion of the 
electron, being oscillatory, cannot on the average be directed 
in the direction of the perturbing force any more than in 
the opposite direction.1

§ 5. Excitation and Disintegration of Atomic 
nuclei by Electrons.

The disintegration of an atomic nucleus by a moving 
particle A may take place through the capture of A (with 
or without the ejection of another particle from the nucleus), 
or by a process in which A only loses some of its energy, 
being still free after the collision. The second type of disin­
tegration is quite analogous to the ionisation of atoms by 
electric particles, and can under certain conditions be di­
vided into two classes of collisions on exactly the same 
basis as the ionisations of atoms considered in the previous 
section. This means that we can have collisions in which 
the nucleus is disintegrated by a photoelectric action of 
the particle A, and collisions in which the particle ejected 
from the nucleus receives the necessary energy by virtually 
a two-body collision with A. The essential condition for this 
classification is that the velocity, v, of A is large compared 
with the orbital velocity u, in the nucleus, of the particle, 
13, whose ejection from the nucleus we are considering. If 
the incident particle A is an a-particle, or a proton, then 
in practice this condition is either not satisfied or is very 
critical. For electrons with sufficient energy to disintegrate

1 If the motion of the electron during the collision was watched 
then of course the one-sided nature of the pulse would be observed. 
The calculation of the effect of the pulse through a FouaiER-Integral 
analysis is, however, only meant to give the resultant state after the 
collision is over and is not concerned with the actual progress of the 
collision.
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a nucleus the condition is, however, well satisfied, because 
such electrons have of necessity much greater velocity than 
the nuclear particles, owing to their much smaller mass. 
We can thus estimate the probability of nuclear disinteg­
ration by electrons by considering separately the effect of 
2-body interaction with the nuclear particles, and the effect 
of “photoelectric” interaction with the nucleus as a whole. 
The former is actually of little importance, and in fact 
produces no disintegration at all unless the incident electrons 
have energy of at least 10' volts. This is so because of the 
small mass of electrons in comparision with the mass of nuc­
lear particles. We need therefore only consider the disintegra­
tion produced by the photoelectric type of interaction.

The magnitude of the latter depends in the first place 
on the intensity of the virtual radiation which represents 
the relevant part of the field of the electron. This is given 
by the general expression (7) in § 1, if for pm we substitute 
h/mc^, where = (1 — zr/c2)1/2, and v is the velocity of the 
electron.1 It is assumed here that hl inc £ is greater than 
nuclear dimensions, i. e. that the energy of the electron is 
less than about 100 million volts. If this is not so then 
pm must be taken equal to nuclear dimensions, in the same 
way as it is taken equal to atomic dimensions in the ana­
logous case of the ionisation of an atom.

1 It can be shown that the field of the electron outside a radius 
h/mcS, as regards its effect on the nucleus, can be replaced by radiation 
in accordance with the conditions set out in § 1, provided h/mcl; is greater 
than nuclear dimensions. The conditions are in fact somewhat strained 
near the lower limit, but, as in other problems, the consequent error 
in the final formulae concerns only a numerical coefficient in a log. term. 
As regards the effect of the field inside h/mc£ we may conclude that it 
is of no importance, because in a collision with a free particle the energy 
transfer from the electron is negligibly contributed to by the electronic 
field inside a radius r if r « h/nicÇ.
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Making the substitution hlmcÇ for pin, (7) becomes

N(y)dv = (2/tt) «log (g'i2me2 th r) dv/v. (18) 

If now we denote by tf(r) the cross section of the nucleus 
for disintegration by radiation of frequency v, and denote 
the threshold frequency for disintegration by r0, the cross 
section for nuclear disintegration in which the nucleus 
acquires energy between Q and () + dQ is

(D (Q) dQ = (2/?r)alog (g i2 me21Q) a (Q/h) dQ/Q (19)

and the total cross section for disintegration by the electron
is

<Z>(£) = (2//r)«\ log (</$2n?c2//7 r) <r(r) dr/r. (20)

To proceed further we must know the value of the nuclear 
absorption coefficient <r(r). Ils value for the nucleus of 
heavy hydrogen has been calculated by Bethe and Peierls1, 
but it can be shown by simple arguments that its order 
of magnitude must in all cases obey the relation

<r (r) dv = reE2/Me (21)

where E and M are the charge and mass of the particle 
whose ejection from the nucleus we are considering.2 We 
would also expect from general considerations that </(r)

1 H. Bethe and B. Peierls, Proc. Roy. Soc. (in publication).
2 Actually if we assume that the disintegration of the nucleus consists 

in the separation of 2 parts whose charge and mass are E, M, and 
E1, Ml, respectively, and if there are no states of excitation, then quite 
accurately

= (n/c) (E/M — EW)2 + W-

This result may be derived by simple correspondence arguments. It is 
only in the special case of E/M = El/Ml that this differs greatly from 
E^Mc.
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is appreciable only in the neighbourhood of the threshold. 
This means that the integral in (20) converges so that the 
integrated cross section is of the order

O' (?) = flh « log Ga ?2 mc2/h Vo) • (E2/Mc Vq)

= g^ïrie2E2/Mc2hvQ) ïog(g2Ç2mc2/hvQ). (22) 

g± and g.> are factors of the order of unity. The accuracy 
of the formula depends on the energy of the electron being 
appreciably larger than the threshold energy h v0. The energy 
of the electron must, however, not be too large because we 
have assumed that h/mc% is larger than nuclear dimensions. 
If this is not satisfied then instead of (22) we find by 
similar calculations that

a (?) = <71 e2 E2/Mc2 h v0) log (g3 £ Mc2/h r0). (22 a)

§ 6. Radiative Collisions. — Non Relativistic 
(p/c<< 1).

The emission of radiation in a collision between two 
electric particles is obtained by the method used here by 
considering the scattering of the radiation with which 
we may replace the perturbing fields. If the two particles 
are an electron and an atomic nucleus then the radiation 
emitted is practically all due to the scattering of the virtual 
radiation field of the nucleus by the electron. The intensity­
distribution of the radiation with which we can replace 
the nuclear field in this problem has already been deduced 
in § 1, and is given by (8) viz.

N(v)dv — (2/71) z«2 (c/u)2 log (g'/îiz?2//? r).

£ being taken as unity since we assume p/c«l. v is the 
relative velocity of the electron and the nucleus, and the 
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formula actually refers to the nuclear field as it appears 
to an observer relative to whom the electron is initially 
at rest. The cross section S(y)dv for the emission of a 
photon of frequency between v and v-\-dv is now the 
product of N(y)dv and the cross section s(r) for the scat­
tering of a photon hv by an electron. Under the condition 
n/c«l the frequencies involved are much less than mc2/h, 
so that we can use Thomson’s formula for s(T) viz. (8:zt/3) 
(e2/znc2)2. This gives

S(v)dv = (2/-t) «:2 (c2/i>2) log ('çnitr/'/i di'/r | 
•(W3)(e2/mc2)2. P J

This result may be expressed in terms of the energy, E (v), 
of the scattered radiation per unit frequency range per unit 
length of path of the electron in an atmosphere containing 
one nucleus per unit volume, by multiplying by liv, giving 
finally

E (v) — (32tt/3) (z2e6/m2v2c3) log (gmv2/h p). (26)

Since the exact value of the factor g in the logarithmic term 
is not given the formula is accurate only for nwjhv»!.1 

The direct calculation of the radiation emitted in electron­
nucleus collisions, using the method of transitions between 
stationary states, has been carried out by Sommerfeld2, 
Sauter3, and others. With the limitation /?r«nm2, (26), 
is in exact agreement with their results.

The derivation of (26) shows that, in the radiative colli­
sions concerned, the form of the spectrum of the radiation

1 For /ir~nw2 the change in velocity of the electron relative to the 
nucleus is comparable with the initial relative velocity, v, which, in view 
of the conditions given in § 1, is another reason why (26) can give only 
the order of magnitude of E (r) for hv-mv2.

2 A. Sommerfeld, Ann. Phys. 11, 257 (1931).
3 F. Sauter, Ann. Phys. 18, 486 (1933).
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emitted is just that of the virtual radiation with which we 
replace the nuclear field, the absolute intensity being simply 
this multiplied by the scattering coefficient. The dependence 
of E (r) on v is only through the logarithmic term in the 
expression for the virtual radiation. This term may be 
written log (pma3Jpmit), where pmax = (v/2nv), is the max­
imum distance from the path of the nucleus at which, to 
an observer al rest relative to the electron, frequencies v 
are found in the nuclear Held (cf. fig. 2); pmin = ft/mv is the 
effective minimum from the nucleus at which its field is 
important.

It is interesting to consider, on the basis of the present 
method, the relation of the quantum-mechanical formula 
(26) for E (r) and the classical formula. The latter can be 
expressed as the product of the virtual radiation of the 
nucleus and the scattering coefficient, in just the same way 
as the quantum-mechanical formula. The scattering coeffi­
cient s(r) is the same in classical theory as in quantum­
mechanics, and the difference between the two cases arises 
from the different values of pmin in the logarithmic term 
in the representation of the nuclear field. The classical value 
of pmiR is ze2/mv2, as compared with fi/mv in the quantum 
theory. The classical formula is accordingly

Æ (r)czass = (32;t/3) (z2e6/m2n2c3) log (g' nw?’/2nv ze~) (27), 

and has an effective upper limit at hr ~ nw2 4-(ze2//w).
The quantum-mechanical formula (26) is based on the 

assumption that (ze2/hu) « 1 i. e. h/inu» ze2/inir. If this 
condition is reversed i. e. ze2/hv»l, then the derivation 
of (26) breaks down. As discussed in the later paper referred 
to in the introduction quantum-mechanics justifies, under

Vidensk. Selsk. Math.-fys.Medd. XIII. 4. 3
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these conditions, a classical treatment, so that (27) approx­
imately represents both the classical and quantum mechan­
ical requirements.

§7. Radiative Collisions — Relativistic
(1 — p/c) « 1.

We shall consider three effects, the radiation emitted 
by a fast electron in collisions with an atomic nucleus, the 
interference between the perturbations of a fast electron by 
the different nuclei in a solid, and thirdly the radiation 
emitted by the atomic electrons due to the passage of a 
fast electron. The kinetic energy of the electron in these 
problems may be taken as (1—p1 2/c2) ~li/2 me2, = £mc2, since 
£ » 1.

1 E. J. Williams, Phys. Rev. 45, 729, (1934).
2 C. F. v. Weiszäcker, Zeit. f. Phys. 88, 612, (1934).
3 The present procedure is somehvvat different from that used by 

Weiszäcker, and is the same as that originally used by the writer in 
an application to radiative collisions (1933). The calculations made then 
were not sufficiently accurate to reproduce the formula obtained by 
Heitler and Sauter (Nat. Dec. 9, 1933) but that this could be done was 
shown by the work of Weiszäcker.

(a) Electron-nueleus collisions. The application 
of the FouRiER-Analysis method to this case was considered 
by the writer in a recent communication to the Physical 
Review1, and it has been elsewhere carried out in detail 
by Weiszäcker2. We shall here only make an approximate 
calculation sufficient for a discussion of the points upon 
which the radiative formula depends, and to make clear 
the analogy with the production of positive electrons by 
high energy photons considered in § 53.

As in the non-relativistic case we have to calculate the 
scattering, by the electron, of the virtual radiation repre­
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senting the field of the nucleus. We shall consider this 
scattering in a system S' in which the electron is initially 
at rest, because the scattering formulae in their usual form 
refer to stationary electrons. The velocity of the nucleus 
in this system is v, and since (1 •—p2/c2)-1/2 » 1 the ex­
pression (8) for the radiation with which we can replace 
the nuclear field reduces to

N (r) dv = (2/tt) a z2 log (£ mc2/h v) dv/v. (28)

We shall consider the scattering of the virtual photons 
represented by (28) in two parts, one with frequencies 
vn<mc2/h, the other with frequencies vn>mc2/h. The suffix 
n is added to denote the frequency of lhe photons before 
scattering, v' shall denote lhe frequency after scattering, 
and v the scattered frequency in the system in which 
the nucleus is initially at rest.

For vn<mc2/h we can, to a first approximation, use 
Thomson’s formula for lhe scattering, and also neglect 
the Compton change of wavelength, so that v' = vn. The 
number of photons emitted in S' with frequencies between 
v' and v'+dv is then

71'(r) d/ = (8 7r/3)(e2/mc2)2-(2/7r)az2 )
log (Jmc2//i/)d///. J

The relation between v' in S' and the frequency v in S is 

r = y'(l —p2/c2)-1/2(1 —p/ccosØ') = r'£(l — p/ccos 0') (30)

where 0' is the angle between the velocity v and the di­
rection of scattering in S'. Since the Thomson scattering 
is symmetrically distributed about ft' = nl2, and since, for 
a given ft', dvlv = dvlv' it follows that the number of 
scattered photons in the system S, with frequencies between 

3* 
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v and v-\~dv, is given by (29) provided we substitute v for 
v', i. e.

n(r)dr = (16/3) (e2/mc2)2 z2 log (q$2 mc2//z c) du/c. (31) 

This result assumes Thomson scattering and it applies ac­
curately only for hvn« me2 i. e., hv « £ me2. In this region 
of frequencies it agrees exactly with the results obtained 
by Heitler, Bethe and Sauter1, by direct application of 
Dirac’s electron theory using the method of transition be­
tween stationary states. We thus see that radiative energy 
losses appreciably less than the incident energy, Çinc2, of 
the electron —- though possibly much greater than me2 
— are due to the Thomson scattering of low frequencies, 
vn « mc2lh, in the system S'.

Multiplying (31) by hv and integrating up to hvn = me2 
i. e. we obtain for the total energy loss due to
vn < me2/h

= A1ccz2 (e2lme2)2 log (g£) $ me2, At«l. (32)

For the frequencies vn> mc2/li the scattering takes place 
mainly in a direction 0'« (mc2//ir )1/2, and the scattered 
frequency is approximately v = vnA-A-(hr /me2) f)'2}~arn 
where a is a fraction not much less than unity. From (30) 
the scattered frequency in the system S is accordingly

v = a vn 5 (1 — p/c cos 0') » a £ (mc2lli).

Since a~l, this means that for every quantum of the nuclear 
radiation of energy hrn> me2 scattered in S', a quantum 
hr~'§mc2 is emitted in S. The total energy lost by the elec­
tron in the system S, due to r > mc2/li, is therefore

1 H. Bethe ancl W. Heitler, Proc. Roy. Soc. 146, 83, (1934). — W. 
Heitler and F. Sauter, Nature, 132, 892 (1934).
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£ mc-jh

( (e2/mc2)2 (i7ic2//z rn) log (/z vn/mc2) •
* mc2!h

• a z2 1 log (</ £ mc2/h vn) dvn-£ me2.

The successive factors in the integrand represent respectively 
the Klein-Nishina scattering coefficient, the spectrum of 
the virtual radiation, and the energy of the emitted photon 
in S, all only approximately. Denoting hv /me? by x we 
have

= A2 (e2/mc2)2«za£n7c2 j x2 log x log (g 'î/x) dx

= A2(e2/mc2)2az2'îme2 k)g(g'î), A2~l. (33)

jR2 is thus of the same order as /?t, so that the frequencies 
vn> mc2/h make no large addition to the radiative energy 
loss. This may be contrasted with classical theory, according 
to which the frequencies vn> mc?/h increase the total effect 
by about (log £)2. This difference comes from the large 
difference between the Klein-Nishina scattering formula 
and the Thomson formula, for frequencies much above 
mc2/h. The Thomson formula is independent of the fre­
quency, while in this region the Klein-Nishina formula 
decreases with frequency approximately as (mc2/hr) log 
(/i v/mc2). This makes the integral in (33) converge fairly 
rapidly. This convergence means that the relative contri­
bution to the final radiative effect from the scattering, in 
the system S', of frequencies appreciably greater than mc2/h 
is very small. The bearing of this on the validity of the 
radiative formula has been dicussed elsewhere1.

The total energy lost by the electron, expressed in terms 
of the cross-section for losing all its energy, is

1 C. F. v. Weiszäcker, Zeit. f. Phys. 88, 612, (1934). — E. J. Williams, 
Phys. Rev. 45, 729, (1934).
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<y = (A\ + R%) 4- £me2 = A(e2/znc2)2az2log (gt), A~ 1, g~ 1. (34)

This is the saine as the formula derived by Hehler and 
Sauter1 provided we take A = 4, g — 2.1. The calculations 
of Weiszacker2 show that a more detailed application of 

method to this problem gives also the exact

Electrorv

the present 
value of A.

Interference between the radiative effects due 
to different nuclei in a solid. When an electron tra­
verses a solid it encounters the field of different nuclei in 
succession, and for very high energies of the electron the 
perturbations due to the different nuclei will not be inde­
pendent. Let us first consider the effect of two nuclei A\, 
A72, on opposite sides of the path of the electron, and at a 
distance a apart in a direction parallel to the path of the 
electron (fig. 5a).

Then in a system S' in which the electron is initially 
at rest, the electron receives two equal and opposite pulses 
within a time a/'ic of each other (fig. 5 b). The Fourier 
spectrum of such a field contains practically no frequencies

1 W. Heitler and F. Sauter, Nature 132, 892 (1934).
2 C. F. v. Weizsäcker, Zeit. f. Phys. 88, 612, (1934).
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below c'îla. Since in S' the radiative effect due to a single 
nucleus comes almost entirely from the scattering of fre­
quencies of the order of mc2/h and less, it follows that if 
c'i/(i > mc2lh, i. e. %>amc/h, the radiation emitted will be 
negligible compared with that emitted if the two nuclei 
acted independently. In other words the interference be­
tween the two nuclei completely cuts out the frequencies 
which are important to the radiative effect. The neigh­
bouring nuclei in a solid arc about 137 (h/mc) apart, so 
that the interference effect for frequencies mc2/h sets in 
when the energy of the electron (in S) approaches 137 me2. 
The interference effect will, however, not always be a ‘cutting 
out’ effect, because there will be cases where successive 
nuclei are on the same side of the path of the electron, 
thus enhancing the radiative effect. A closer analysis shows 
that the electrons must have energy very much greater 
than 137 me2 before the interference between the successive 
nuclei in a solid sensibly reduces the average radiative 
energy loss. Assuming the distribution of atomic nuclei 
in the solid to be quite regular the effect is found to set 
in at energies of the order of 137-z2,3mc2. This means 
that for electrons traversing lead, for example, the reduction 
in the average radiative energy loss due to interference 
can be neglected unless their energy is of the order of IO10 
volts.

Radiation from atomic electrons. In a collision 
between a moving electron and an atom, radiation is 
emitted by the atomic electrons as well as by the moving 
electron1. It may readily be shown that the former is 
relatively very small. Its magnitude per cm of path of the

1 The interference effect beetwen the radiations emitted in a collision 
between two electrons is unimportant under the condition 1—u/c«l.
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moving electron, in an atmosphere containing 1 atom 
per cc. is tmcS/h

R = \ zN(v) a(v) hvdv.
Jo

N (v) is the density of photons in the virtual radiation 
representing the field of the moving electron is the, 
Klein-Nishina scattering coefficient per electron, and z is 
the number of electrons per atom. On integration we find

R = (1/3) «2 (e2/mc2)2 znc2 (log?)3. (351)

The ratio of this to the radiation emitted by the moving 
electron, represented by (34), is of the order of (log?)3/ 
2? log (137 2~1/3). This ratio is in all cases very small.

§ 8. Production of Electron-Pairs by a High 
energy Photon in the field of an atomic nucleus.

The annihilation of a pair of positive and negative 
electrons giving two photons, and the converse process of 
the creation of an electron-pair by two photons, were the 
consequences of his theory of the electron first considered 
by I) iRAC. As regards the second process it was evident 
that the intensity of radiation necessary to give a detect­
able effect would not be available in practice, and it 
appeared that the theoretical possibility of the creation of 
electron-pairs was outside experimental test. We now know 
that this is not so, and that if instead of using two beams of 
radiation we irradiate ordinary matter with one beam then it 
is possible to create electron pairs to a measurable degree. 
Under these conditions a pair is produced not by the action 
of two photons as considered by Dirac, but by a photon

1 This also applies to protons of the same velocity, i. e. protons with 
energy £ Me2 where M is the mass of the proton.
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and an atomic nucleus. If, however, we think of the per­
turbing field of the nucleus in terms of its Fourier com­
ponents, according to the method of the present paper, 
we find that the two effects are really closely connected. 
In the case of a photon, whose energy is large compared 
with me2, the connection between the two effects is indeed 
very close, and the formula for pair-production by such a 
photon and a nucleus may readily be expressed in terms 
of the formula for pair-production by two photons.

The latter was recently derived by Breit and Wheeler1, 
and is of course also implied in Dirac’s annihilation for­
mula. For two photons hv1 = xmc2, /zr2 = y me2, travelling 
in opposite directions, Breit and Wheeler’s result, in 
terms of cross section is

o(x, y) = n (e2/mc2)2 \2 6 zz_2+ 2 0 zz-4—0 zz~6 — (zz2— 1 )1'2 (zz~3 + zz~5)} 
zz2 = xy, H = cosh_lzz

the threshold frequencies being given by

x • y = 1. (36 a)

It will be noticed that the effect depends on the product 
of x and y, which is in accordance with the Lorentz 
invariance of this product.

1 Breit and Wheeler, Bull. American Phys. Soc. 9, 34, (1934). In a 
communication to the writer the authors have pointed out that their 
formula quoted in this publication must be divided by 2 on account of 
a slip in the calculations, and by another factor of 2 on account of 
their different definition of cross section. The cross section, o’, used here 
is the more usual one and is such that if in one beam Aq photons cross 
unit area, and in the other beam travelling in the opposite direction 
Ar2 photons cross unit area, then A^A^cis the number of pairs produced 
per unit area perpendicular to the directions of propagation. The cross 
section o' used by Breit and Wheeler is such that if there are ni 
photons per unit volume in one beam and n% in the other, then 
is the number of pairs produced per second per unit volume. It can be 
shown that <r = ^<r'.



42 Nr. 4. E. J. Williams:

We shall now derive from (36) the formula for pair­
production by a high energy photon and a nucleus. Let 
the energy of the incident photon in the system, 5, in 
which the nucleus is at rest, he i’mc2. To bring out the 
correspondence between this effect and the radiative effect 
we shall consider a system S' in wich the nucleus is moving 
in the opposite direction to the photon with a velocity u 
given by (1 — i?2/c2)~1/2 = The transformation to this 
system reduces the energy of the photon to znc2.1 The photon 
distribution in the virtual radiation field to which the 
nuclear field in the system S' is equivalent, is, from (8),

N (v) dv = (2/ti) a z2 \og(g'§ mc2/hv) dv/v, g~l. (28) 

The “nuclear” photons travel in the opposite direction to 
the “external” photon, me2, and the cross-section for the 
production of a pair in terms of formula (36) for the produc­
tion of pairs by 2 photons, is

tf(£) — N (y) dv o'(l, /ir/nic2). (37)
mcP/h

Using the Breit-Wheeler formula for o(x, g) this gives 
on integration

#(£) = (28/9) az2 (e2/mc2)2 log (y£). (38)

Apart from the actual value of the numerical factor g inside 
the logarithmic term, which cannot be determined by the 
present method, this formula is identical with the formula 
for pair-production by high-energy photons derived by direct

1 Strictly speaking to me2<!1 "L —

1 we can take this, for simplicity, as

but since we assume

me2. The use of the exact
value would require a corresponding change in the lower limit to the 
integral in (37), leaving the result unchanged.
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application of Dirac’s theory by Heitler and Sauter1, 
and by Nishina, Tomonaga and Sakata2.

1 W. Heitler and F. Sauter, Nature 132, 892, (1934).
2 V. Nishina, S. Tomonaga and S. Sakata, Scientific Papers Japanese 

Inst. Phys, and Chem. Res., 24, 1, (1934).

(38) is of exactly the same form as the radiative formula 
(34). The correspondence between the two effects, accord­
ing to the present method of calculation, arises from the 
correspondence between the Klein-Nishina scattering for­
mula and the Breit-Wiieeler pair-production formula. For 
frequencies large compared with mc2/h the Klein-Nishina 
scattering cross section is of the order of

(e2/mc2)2 (inc2lh v) log (/z vlmc2) (39)

and this also represents the order of magnitude of lhe cross 
section (36) for pair-production by a photon hr »inc2 and 
a photon hv = me2, travelling in opposite directions. Using 
this approximate form, and substituting x for hr/me2 (37) 
becomes

o' (£) ® (e2/mc2)2 a z2 ( x~2 log x log (g '$/x) dx. (40)

The integral in this expression is exactly lhe same as that 
which occurs in lhe expression (33) for the radiative effect, 
and its rapid convergence shows that, as in the radiative 
effect, it is only frequencies in the nuclear field of the order 
of mc2/h that are important.

The convergence of the integral in (33) and (40) is, in 
fact, essential to the full applicability of the present method. 
In the system S' the nucleus moves with a velocity v given 
by (1—u2/c2)-1/2~ £, and the replacement of its field by 
the radiation represented by (28) is valid only if the per- 
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turbed particles have velocities u satisfying (1—zz2/c2)-1/2 
« (1 — p8/c2)~1/2. If this is not so then the fact that the nuc­
lear field in S', is not travelling with exactly the velocity of 
light can, as it were, be found out by the perturbed part­
icles. Now since in the system S' the pair production is 
due to the interaction of photons of energy of the order of 
me2, the energy of the positive and negative electrons pro­
duced is also of this magnitude. In other words if we denote 
by ii the order of magnitude of the velocity of the electrons 
concerned in the phenomenon (whether in the negative energy 
state before interaction, or in a state of positive energy after) 
then (1 — zz2/c2)-1/2 is of the order of unity, and therefore 
the above condition is satisfied since (1—z?2/c2)-1 2 ~ £ » 1 . 
Similarly in the radiative effect the velocity zz of the electron 
in S' (acquired through the scattering of the ‘nuclear’ radia­
tion), is such that (1 — zz2/c2)-1/2 ~ 1, because the frequencies 
concerned in the scattering are of the order of only znc2//?.

Finally we shall refer to the effect of shielding and to 
the dimensions of the region around the nucleus from which 
pairs are produced. This region depends upon the distance 
from the nucleus al which frequencies sufficiently high to 
satisfy the threshold condition, (36 a), for pair production, 
are present in the nuclear field. Now in the system S' in 
which the “external” quantum has energy zzzc2 the threshold 
frequency for the “nuclear” radiation is also me2. Frequen­
cies of this order are present to an appreciable extent in 
the held of an unshielded nucleus out to a distance p£ max 
given by pniajS ~ fi/mc so that ~ £ (Tz/zzic). As a result 
the region for pair production by a photon hv = £znc2 
extends to a distance £ (7z/™c) from the nucleus.

If the distance ^(îï/mc) is comparable with or greater 
than atomic dimensions then the shielding of the nuclear 
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field by the atomic electrons will evidently reduce the 
cross section for pair-production. Assuming the shielding 
effect to be a sudden cutting off of the nuclear field at 
r = z“1/3-hydrogen radius, then if £ > «-xz-1/3, = 137z~1/3, 
the virtual radiation of the nucleus is given by (9), and 
the pair production formula is obtained by replacing ‘i in 
the log term in (38) by 137-z-13.

§ 9. Production of Electron-pairs in collisions 
between two particles, with relative velocity p 

satisfying (1—p/c)«l.

The cross-section for this effect may be derived by the 
present method by replacing the field of one of the particles 
by radiation and then consider the production of pairs by 
this virtual radiation in the field of the other particle, using 
the formula given in the previous section. It may also be 
derived by replacing the fields of both particles with radia­
tion and starting with the Breit-Wheeler formula, but 
after one integration equivalent to that made in the previous 
section (to derive the effect of a photon and a nucleus from 
the effect of two photons) this procedure is identical with 
the first.

Let v be the relative velocity of the two particles 
and A2, and let (1 — p2/c2)-1/2 = £. In a system S in which 
A, is at rest the distribution of photons which represents 
the field of A2 (charge z2e) is

N(v)dv = (2/zr) a zflogtø? me2/hr) dv/v. (28)

The cross-section a (E)dE for the creation of a pair of 
total energy between E and E-\~dE (including energy of 
mass) is now the product of N(y)dv, with v = E/li, and 
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the cross section for the production of a pair by a photon 
of energy E in the field of the stationary particle (charge 
z, e). Substituting for the latter the value given by (38) we 
accordingly have

ap(E)dE = (2/n) log (g%me2jE) dE/E-
• (28/9) az2 (e2/mc2)2 log (g' El me2) 

= (56/9/r) a2z2zl (e2/mc2)2 log (g'ime2/E) 
log (0.14 El me2) dE/E.

The maximum frequency in the virtual radiation of .12 is 
of the order %mc2/h, so that the cross-section for the pro- 

,.~£mc2

duction of a pair of any energy is \ o'(E)dE. On integra- 
. . . . *2 me2tion this gives

<rp($) = (28/217t) a2z2z2(e2/me2)2 (log g ^)3. (42) 2

With regard to this integrated cross-section it is important 
that its value is little dependent on the exact value of the 
differential cross-section <fp(E) near the limits Emin~mc2 
and E ~'£mc2. By virtue of this it is only the numerical 
coefficient g inside the log term that is affected by the 
considerations, first that the formula used for pair-produc­
tion by a photon and a nucleus is correct only in order 
of magnitude for E ~ me2, and secondly that for E ~ £ me2 
the velocities of the corresponding positive and negative 
electrons do not satisfy the condition for the accurate 
replacement of the field of A2 by radiation.

1 In the second expression we have substituted for g' the exact 
numerical value given by the calculations of Heitler and Sauter.

2 The form of this expression is in agreement with calculations of 
pair-production by two particles carried out by Landau and Lifshitz 
(Nature, 134, 109 (1934)), in so far as their results are published.
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(42) is also valid if one or both of the particles are 
electrons1. This is so because the effect of the reaction on 
the electrons in a pair-producing collision is negligible 
unless the energy E of the pairs produced is of the order 
of £nic2. As mentioned in the preceding paragraph pairs of 
this energy do not make a significant contribution to the 
integrated cross-section, and a first order change in their 
number only affects the numerical coefficient g inside the 
logarithmic term. For an electron of energy 'i me2, and a 
nucleus charge ze, we can therefore still use (42). We must 
of course substitute unity for z2, and take zr equal to the 
atomic number z, so that the cross section is

1 The value of the numerical coefficient g in the logarithmic term
will, however, be slightly different for electrons than for heavier particles.

(43)

The shielding of the nucleus by the atomic electrons conies 
in, in this case, through its effects on the formula for pair­
production by a photon and a nucleus used in the deriva­
tion of (41). It follows from the results of the preceding 
section that the differential cross-section given by (41) is 
unaffected by shielding if E is less than about 137 me2 z~1/B, 
while if E is much greater than this then in the second 
logarithmic term in (41) (0.14E/mc2) must be replaced by 
(137z-V3).

§ 10. Splitting of a photon in the field of an 
electric particle.

In addition to producing a pair of positive and negative 
electrons the interaction of two photons with electrons in 
negative energy states may result in a scattering process, 
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without pair-production. An interaction of this kind between 
a photon and a virtual photon in the field of an electric 
particle would result in the latter being scattered from the 
field of the particle. The process may be compared with 
the scattering of the virtual radiation in a radiative collision 
(§ 7), the main difference being that here the scattering is 
performed by an electron in a negative energy state in the 
presence of another photon.

An encounter of a photon with an electric particle may 
thus result in the production of another photon. In the 
system in which the electric particle is at rest the two 
photons which are present after the collision must of course 
have a resultant energy equal to that of the incident photon. 
The effect would therefore appear as a splitting of the inci­
dent photon in the field of the electric particle. While the 
present method of considering the problem clearly indicates 
the possibility of this effect, its application to a quantitative 
treatment is not as straightforward as in the problems consi­
dered in previous sections. This is so because the scattering 
of two photons involves the formation of virtual pairs of 
all possible energies, and some of these energies may violate 
the conditions of applicability given in § 1.

Let us, however, consider a photon hv = Zinc2. £»1, 
incident on a stationary nucleus, ze. In a system, S', moving 
with the photon with a velocity n given by (1—t>2/c2)—1/2 = 
I i the energy of the photon is inc2, while the nuclear field 
is equivalent to a distribution of photons of frequency 
ranging from zero to '§mc2, the number per unit frequency 

o /J mc2\range according to (7) being of the order az2v~llog — .
\ nv J

The theoretical cross-section for the scattering of two photons 
has not been completely worked out, but recent calculations
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by Heisenberg1 show that for a photon me2 and a photon 
hv, <mc2, moving in opposite directions, it is of the order 
of a2 (e2/znc2)2 (/? r/znc2)5. The rapid decrease with decreasing 
hv means that the contribution to the cross-section for 
“splitting” from the virtual photons with hv«mc2 is neg­
ligible. The contribution from the virtual photons with 
hv~mc2 is of the order of

" “2 (e2/mc2)2 « z2 log J
~ a3z2 (e2/mc2) log £. (47)

Heisenberg does not actually give the scattering cross-section 
for photons with hv » me2, but it is unlikely that the effect 
of such photons in the virtual radiation of the nucleus 
makes any significant addition to (47). It will be noticed 
that the cross-section given by (47) is about a-2, = 1372, 
times less than the cross section for pair-prod uetion by 
the same photon.

Summary.
The conditions for replacing the field of an electric par­

ticle in collision problems by a radiation field, are considered, 
and a general formula for the spectrum of the equivalent 
radiation is given. By using the appropriate form of the spec­
trum formula several effects produced by electric particles 
are readily deduced from results in radiation theory. The 
phenomena considered in this way include the ionisation of 
atoms by electric particles, nuclear disintegration by fast 
electrons, radiative collisions, production of electron pairs 
in the field of an atomic nucleus by high energy photons 
and electrons, and the splitting of a photon in a nuclear

1 W. Heisenberg, Zeit. Phys. (1934).
Vid. Selsk. Math.-fys. Medd. XIII, 4. 4
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field. The method of treatment provides a new way of regar­
ding these problems and in some cases it shows that the 
theoretical basis of the existing formulae is very simple.
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